Quantum Theory of Electronic Materials – EE 334K


• Introduction to quantum mechanics (QM)
• Application of QM to the physics of atoms and molecules.
• Application of QM to the physics of the solid state, with an emphasis on semiconductor physics.

Course Topics

• Experimental Basis for Quantum Mechanics; Wave Particle Duality and Uncertainty Principle. (ER
Chpt. 1-3, McK Chpt. 4)
• Schrodinger Formulation of Quantum Mechanics; One Dimensional Examples. (ER Chpt. 5, 6)
• Schrodinger Equation: Three Dimensions. (ER Chpt. 7-9)
• Atoms and Molecules. (ER Chpt. 9,12)
• Statistical Mechanics and Applications. (ER Chpt. 11, McK Chpt. 5, 6)
• Quantum Theory of Solids. (ER Chpt. 13, McK Chpt. 8)
• Semiconductors. (ER Chpt. 13, McK Chpt. 9)


M 427K (e.g., integral calculus, differential equations, Fourier series, vectors, vector calculus, gradients), and PHY 303L & 103N (primary laws of motion, wave phenomena, electricity and magnetism, optics) with a grade of at least C in each.

Website: https://utexas.instructure.com/courses/1242839

Magnetic Materials & Devices – EE 396V


Magnetic materials play a key role in both present and future computing for storage and logic. This graduate-level course provides a foundation for understanding the materials, physics, and engineering behind magnetic devices. It starts with the fundamentals of magnetic materials, including both classical and quantum descriptions of the origin of magnetism in oxides and metals. We discuss the different energies at play in magnetic materials such as demagnetization energy, magnetocrystalline anisotropy, exchange energy, and dipolar coupling. We describe magnetic switching mechanisms and how spin structures arise, such as domain walls and topologically-protected skrymions. By the end of the course, we are able to understand existing breakthrough magnetic devices, as well as emerging phenomena that could be applied to future memory and logic devices.

Course Topics

  • Review of Maxwell’s equations and of classical and quantum origins of magnetism
  • Spin-orbit coupling and exchange interactions in ferromagnets
  • Magnetic oxide structures such as ferrites, perovskites, and garnets
  • Spin structures such as domain walls and skyrmions
  • Magnetic reversal mechanisms including spin torque effects
  • Magnetic devices such as giant magnetoresistance and tunnel magnetoresistance recording heads, hard drives, and spin transfer torque magnetic random access memory
  • Possibilities for future devices including memory/logic devices, multiferroic materials, spins in 2D materials, and magneto-optical devices


Graduate standing or consent of instructor. Undergraduate quantum mechanics and electricity and magnetism strongly recommended

Term: Fall 2017

Website : https://utexas.instructure.com/courses/1210448